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FORCES ON OSCILLATING BODIES IN 
VISCOUS FLUID 

P. G. PATTANI* AND M. D. OLSON 

Department of Ciuil Engineering, University of British Columbia, Vancouver, BC, Canada 

SUMMARY 
This paper describes a method for determining the fluid forces on oscillating bodies in viscous fluid when the 
corresponding flow problem has been solved using the finite element method. These forces are characterized 
by the concept of added mass, added damping and added force. Numerical results are obtained for several 
example body shapes. Comparison is made with exact analytical results and other finite element results for the 
limiting cases of Stoke’s flow and inviscid flow, and good agreement is obtained. The results for finite values of 
the body amplitude parameter p show the appearance of added force from the steady streaming component 
of the flow for asymmetric bodies. Results are also obtained for the associated flow where the fluid remote 
from a fixed body is oscillating. 
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INTRODUCTION 

Considerable research has been carried out on fluid-structure interaction problems, and today 
most of the analyses are handled with finite element methods. Most of this work, however, deals 
with inviscid fluids. A recent symposium1 covered offshore structural applications. On the other 
hand, relatively little work has dealt with viscous fluid applications. For example, Belytschko et a1.’ 
and Liu3 have both considered a general class of problems using a mixed Eulerian-Lagrangian 
approach. Olson and P a t t a ~ ~ i ~ - ~  have developed a method to analyse the periodic flow around an 
oscillating body with finite amplitude. 

This paper describes an  extension of this method to determine the fluid forces acting on the 
oscillating body. For a dynamic system these forces are generally characterized by the concept of 
added mass, added damping and added force. 

It is possible to analyse the case of a body undergoing a harmonic motion in an otherwise still 
fluid and obtain the flow qLantities for the case of a two-dimensional harmonic flow past a similar 
section by the appropriate transformations. These transformations and the computation of the 
fluid forces for the associated flow situation are described in this paper. 

Numerical results are obtained for three different body shapes, namely, (1) an oscillating circular 
body, (2) a square body oscillating parallel to one of its sides and (3) a symmetric Joukowski profile 
oscillating parallel to the line of symmetry. An example flow pattern due to steady streaming for the 
circular profile is presented and comparison is made with published experimental results. The 
added mass, added damping and added force are presented for all body shapes. A comparison is 
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made with analytical and numerical results for the limiting cases of Stoke’s flow and inviscid flow. 
The following is necessarily brief, but more details are available in Reference 7. 

THEORETICAL FORMULATlON 

The basic theory and finite element formulation which form the basis for the current work are 
available e l~ewhere .~ .~  Hence only the essentials needed here are included in the following. 

Conservation equations and boundary conditions 

The basic equations governing two-dimensional, viscous incompressible fluid flow are the 
Navier-Stokes equations, the equations of continuity and the boundary and initial conditions. 
Solution of the flow problem is obtained within a plane domain !2 bounded by a contour r 
which, in general, is composed of two distinct parts, denoted by r, and Ts respectively. The 
well known Navier-Stokes and continuity equations for this problem can be written in the form 

Dv 

au av 
ax a y  -+-=o, 

where u, v are the x, y components of velocity, p, p are the density and pressure respectively, v is the 
kinematic viscosity p / p ,  where p is the absolute viscosity, and D/Dt is the material derivative. 

Boundary conditions are given for velocities on the boundary portion r,, referred to as the 
kinematic boundary, and tractions over the remaining part r,, the mechanical boundary. That is, 

u = u, v = V  on r,, 

where U, V are the specified velocities on r,, 2, 
are the direction cosines of the outward-pointing normal to the boundary. 

are the specified tractions on r, and n,,  n2 

Equation of motion of a rigid body in a fluid 

The equation of motion for an elastically supported rigid body of arbitrary shape is given by 

mS + CS + ks = f ( t ) ,  (3) 
where rn is the mass of the body, c is the structural damping coefficient, k is the elastic spring 
constant, s is the displacement and the time-dependent loading consists of two components 

f ( t )  = F d t )  + F,(t)> (4) 

where F,(t) is the fluid force and F,(t) is the external force on the body. 
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Cane I Case II 

Figure 1. Comparison of two associated flows 

Comparison of two associated frows 

We consider an associated pair of two-dimensional flows as defined in Figure 1. In Case I the 
fluid remote from a stationary body has a uniform time-dependent velocity U(t) ,  and in Case I1 the 
identical body has an equal velocity U ( t )  in the opposite direction, while the fluid remote from the 
moving body is stationary. These velocities lie in the x direction. The flow quantities in the co- 
ordinate system fixed to the body in Case I are denoted by subscript a, those fixed relative to the 
body in Case I1 by subscript b and those fixed relative to the undisturbed fluid in Case I1 by 
subscript c. 

Carrying out the transformations between these two  case^^'^'^ leads to the result that 

The consequence of equation (5)  is that the velocities, and hence the ‘flow pattern’, are identical in 
both Case I and Case 11. The only difference between the two cases as related to pressure is the 
additional uniform pressure gradient - p dU/dt in Case I acting in the direction of acceleration. 

It is possible to consider the wave flow past a structural member by considering a two- 
dimensional harmonic flow past a similar section (Sarpkaya and Isaacson’O). This situation can be 
obtained by letting U ( t )  be a harmonic function in Case I. If a problem is analysed in the inertial co- 
ordinate system (x,, y,) as prescribed in Case I1 for a harmonic velocity - U(t) ,  then it is possible to 
obtain the flow quantities in the non-inertial co-ordinate system (Xb, yb). Furthermore, to obtain 
the flow quantities in Case I for a harmonic U ( t )  the transformations given by equation ( 5 )  can 
easily be performed. Hence the following analysis is carried out only for Case 11. 

Non-dimensional form of conservation equations 

The problem under consideration is that of a body of arbitrary shape, with a characteristic length 
b in the direction of motion, undergoing a simple harmonic displacement motion in an otherwise 
still fluid (Figure 2). The simple harmonic displacement motion of the body is given by 

s = so sin (cot), 

where so is the displacement amplitude and co the impressed frequency. Then the characteristic 
velocity in the flow is that of the body, namely, uo = a s o .  Introducing the non-dimensional 
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\PROBLEM DOMAIN 

Figure 2. Problem configuration 

variables 2 = x/b ,  j = y /b ,  C =  wt, u” = u/uo, v“ = v/u,,, f j  = p/puo/b into equation (1) gives 

au  av 
ax ay 
-+-=o, 

where all quantities are their respective non-dimensional values and the over tilde has been 
dropped for convenience. There are two natural Reynolds numbers in the problem, namely, the 
usual Reynolds number and the frequency Reynolds number given respectively by Re = uo b/v  and 
R ,  = wb2/v.  Note that B = Re/R ,  = so/b is the body amplitude ratio and is related to the 
Strouhal number S = bw/u, by f l  = 1,’s. The corresponding non-dimensional fluid stresses are 

(8) 

and the non-dimensional form of equation (3) is 

mS + Cs + ks = Jb(F, + Ff), (9) 

where all stresses have been normalized by puo/b,  the forces by puo I ,  the mass by pAbl (where A ,  is 
the cross-sectional area of the body and 1 its length), the damping coefficient by wpAbl, the stiffness 
by w2pAb1 and 
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Finite element formulation and solution of equations 

interpolation for the pressure are used to discretize equation (6)  as follows: 
Curved isoparametric elements with quadratic interpolation for velocities and bilinear 

u = Niui(t) ,  i = 1,2,. . . ,8 ,  
u = Niui(t), i = 1,2,. . . ,8, 
p = Mipi( t ) ,  i = 1,. . . ,4, 

where ui,  ui, pi are time-dependent nodal variables and Ni, M i  are shape functions. 
These equations are substituted into equation (7) and the Galerkin method is applied to give the 

elemental equations. When the global equations for a complete problem are assembled from these 
elemental equations, the moving body boundary conditions are satisfied to order B by a Taylor 
expansion. This leads to a set of ordinary differential equations of first order in time for the nodal 
vector d made up of velocity components and pressure. 

An approximate steady state solution of these equations is obtained by the method of averaging, 
assuming the solution for d for small p is of the form 

d = A + B(t )  cos t + C ( t )  sin t ,  (12) 
where B(t),  C ( t )  are assumed to be slowly varying functions of non-dimensional time t .  The first 
term A represents the steady streaming'' part of the solution, which arises naturally for a system 
with quadratic non-linearities as is encountered here. The averaging technique results in a set 
of non-linear algebraic equations for the average values of A, B, C .  These equations are then 
solved using a Newton-Raphson procedure. 

Determination of fluid forces 

Knowing the stress components cr,, oy, zXy at any point P in the two-dimensional fluid domain, 
the stress on any plane BC through this point and inclined at an angle 6 to the x axis can be 
calculated from 

-2sindcosd ] { zi} (13) 
cos2 6 {:) = [ ::xos 8 - sin dcos 6 sin' 8- cos2 6 

ZXY 

where cr and z are the normal and shear components respectively of stresses on the plane BC as 
shown in Figure 3. 

For an isoparametric element the co-ordinates of a point in the element are also given by 
x = N i x i ,  y = N i y i ,  where the Ni are the shape functions from equation (10) and x i ,  y i  are the 

Figure 3. Stress components 
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= CJI I I  
nodal co-ordinates. Using equations (1 1) and the chain rule, the derivatives of the shape functions 
are given by 

aNi 

a N i  

dY 

__ 
(1 x 

__ 

‘ 

where the matrix J is the Jacobian of the transformation. Equations (11) are substituted into 
equation (8) to obtain 

I fJx 

fJY 

Z X Y  

a N .  
2 2  0 - - M i  ax 

aNi 
0 2- --Mi 

aY 

0 aNi  aNi  
ay ax 
__ -- 

where the shape function derivatives are obtained from a numerical inversion of equation (14). 
Therefore, to obtain the normal and shear components of the stresses acting on plane BC at point 

P in the fluid domain, first the derivatives of the shape functions are evaluated using equation (14), 
then the stress components ux, cy, zxy are evaluated using equation (15) and substituted into 
equation (13). 

For a body of general cross-section, the resultant non-dimensional fluid force in the x direction 
acting on it is given by 

(0 sin 0 + z cos 0) dS, (16) s F , =  - 

where S is the non-dimensional co-ordinate along the boundary and 0 is the angle which S makes 
with the positive x axis. 

In general the resultant fluid force F, on a body oscillating with velocity u,, cos wt will consist of 
three components, namely, (1) a component in phase with the acceleration of the body, (2) a 
component in phase with the velocity of the body and (3) a component which is constant. Therefore 
the fluid force F, obtained from equation (16) after integration will be of the form 

F, = P + Q cos t + R sint. (17) 

Computation of added mass, added damping and added force 

equation (17) are substituted into equation (9) to obtain 
The non-dimensional displacement of the body, s = /?sin t ,  and the fluid force F, from 

F, = ($ - R )  sint + ($ - Q)cos t +-sin kB t - P 
Jb 

The equation of motion can also be written in the form 

where ma, c, and fa are the non-dimensional values of the added mass, added damping and added 
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force respectively. The non-dimensional displacement of the body, s = 8 sin t is substituted to 
obtain 

Comparing equation (18) and equation (20), we obtain 

Therefore, to calculate values of the added mass, added damping and added force, we first carry 
out the numerical integration as indicated in the previous Subsection to obtain P ,  Q and R and then 
use equation (21). Note that the added force is zero for a body which has an axis of symmetry 
perpendicular to the direction of motion. 

NUMERICAL RESULTS 

Oscillating circular body 

Numerical results are obtained for a circular body with diameter b of unit value with its centroid 
located at the origin of the x-y co-ordinate system. The body is performing oscillations parallel to 
the x axis. The computations were performed for a grid corresponding to D,/b = 30, where Do is the 
diameter of the outer fixed cylinder.‘ This particular geometry was chosen to correspond to the 
experimental results of Tatsuno.” Detailed comparisons are shown in Reference 6 and only an 
illustrative example is shown here for the convenience of the reader. 

The experimental results in the form of steady streamlines (for the streaming flow) are shown in 
Figure 4 for R, = 278.2 and 8 = 0.046, whereas the numerical results are shown for the same value 
of R ,  and two values of 8, namely, 0038 and 0-043. The numerical result for f l  = 0.046 did not 
converge even when the solution for = 0.043 was used as an initial guess solution. As explained in 
Reference 6, this may represent a bifurcation point close to 8 = 0.046 for transition to a different 
flow pattern. 

Both the numerical and the experimental results clearly show the appearance of the secondary 
vortices close to the body. There is very good agreement between the experimental and numerical 
results regarding the flow pattern and the location of both the vortices in each quadrant. However, 
the numerical results slightly underpredict the thickness of the secondary vortices. 

Several approximate analytical solutions of this problem have been published, the most recent 
and apparently most accurate being that by Wang.13 However, his solution is restricted to small 
Reynolds numbers R such that RS >> 1 and R/S << 1, where S is the Strouhal number based on the 
radius. In the present notation, R = Re/2 and S = 1/28. Hence for the experimental result shown in 
Figure 4 (R, = 278.2, f l  = 0.046, Re = 12.8) RS = R,/4 = 69.6 and R/S = f12 R ,  = 059. This would 
appear to preclude using Wang’s result for this case. Furthermore, according to Figure 3 in Wang’s 
paper13 (which apparently has its abscissa mislabelled SIR rather than RS), for a value of RS = 69.6 
the thickness of the secondary vortices should be over 80% of the radius. (Actually the curve is very 
steep here and clearly unreliable.) This prediction is obviously contradicted by Tatsuno’s 
experiment and the present numerical results, which show this size to be about 30%. 

Added mass and added damping quantities are presented for a range of p and R ,  values 
including the linear case of p = 0. Stuart14 has presented analytical results for this case. Therefore a 
direct comparison is possible and the results are presented graphically in Figures 5 and 6. The 
agreement between the exact analytical results and the finite element results is very good. 
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f3 = 0.038 

= 0.043 

f3 = 0.046 

Figure 4. Steady streamlines for oscillating circular body for R ,  = 278.2, D,/b = 30 

The comparison is also made with the limiting case of inviscid flow. The added mass and added 
damping values for a bluff body oscillating at high frequency with a small amplitude are not 
affected much by viscosity. Hence the values of ma and c, for large values of R,  and b =  0 should 
approach the values predicted by inviscid flow. The results obtained for this case are presented 
in Table I. For R, = 10000 the value of the added mass obtained herein is 1.0607 as compared 
with 1 for the inviscid flow.I0 The value of the added damping approaches zero as it should. 

The results for the added mass and added damping for = 0,0.03 and 0.1 are shown graphically 



f- 

LEGEND 

a- 

e 
m d- 

2 
0 '  
< 9- 
V "a 

x- 

9- 

z , , , , , , 3 , , , , ,  , , , , 

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 i 0 

Figure 5. Added mass rn, for oscillating circular body for = 0 

1.0 

Figure 6. Added damping c, for oscillating circular body for f l =  0 



528 P. G. PATTANI AND M. D. OLSON 

TableI. Added mass ma and added damping c,  for 
oscillating circular body for R, large and = 0 

Rul Added mass m, Added damping c,  

500 1.177 0.256 
5000 1.063 0.039 

10 000 1.061 0.020 

Inviscid 1 .o 0.0 

Figure 7. Added mass m, for oscillating circular body 

in Figures 7 and 8 respectively. The result for p = 0.03 shows that the added mass is lower and 
the added damping is higher than for p = 0. The same is true for the more complex flow situation 
of p = 0.1, except at high values of R ,  where the situation is reversed; that is, the added mass 
terms are higher and the added damping terms lower than for f i  = 0. However, in all cases the 
differences are very small. 

Oscillating square body 

Numerical results are obtained for a square body of unit size performing harmonic oscillations 
parallel to one of its sides. Two finite element grids, hereafter referred to as Grid 1 and Grid 2, were 
used for this problem.6 Grid 1, a relatively crude grid with D,/b = 11, was used to perform 
preliminary calculations, while Grid 2 was a more refined grid with D,/b = 30. 
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1.0 

Figure 8. Added damping c, for oscillating circular body 

Table 11. Added mass ma and added damping c, for oscillating square body 
for R ,  large and p =  0 

R ,  Added mass ma Added damping c, 

Grid 1 Grid 2 Grid 1 Grid 2 

500 
5000 

10000 
Inviscidg 

1.275 1.316 0.06 1 0.257 
1.266 1.238 0.006 0.030 
1.266 1.237 0.003 0-015 

1.19 0 

The added mass and added damping quantities are presented for a range of /? and R ,  values 
including the linear case of f i  = 0. Owing to the non-availability of any analytical results to make a 
direct comparison, finite element results for ma obtained by Irani15 are used for this purpose. Irani 
used the streamfunction formulation of the Navier-Stokes equations and the 18 degrees of 
freedom quintic element for the finite element interpolation of the fluid domain. 

The values of the added mass and added damping for large values of R, and /? = 0 for both grids 
are presented in Table 11. Theoretically, in the limit of very high frequencies ma should approach 
the value predicted for inviscid flow. The limiting value ma = 1.24 predicted using Grid 2 and 
ma = 1.27 using Grid 1 are within 4% and 6.5% respectively of the inviscid value of 1.19. The 
value for the added damping c, approaches zero for both grids as it should. This indicates that 
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D 

.O 

Figure 9. Added mass ma for oscillating square body for p = 0 

the accuracy and representation of the flow phenomena for the linear case are very good and 
the results improve with grid refinement as they should. 

For moderate values of R, the values of the added mass for the linear case obtained using both 
grids and those obtained by Irani” are presented graphically in Figure 9. The values of ma 
obtained using Grid 1 are consistently lower than those obtained using Grid 2 except in the 
limiting case of very large R,, where the result for Grid 2 is closer to the inviscid value and lower 
than for Grid 1. The values of ma obtained using Grid 2 are close to the results obtained by Irani 
except for the limiting case of very large R,, where Irani’s result approaches unity rather than 1.19 
for the inviscid case. 

The added damping results for the linear case are shown in Figure 10 for moderate values of R,. 
The values of c,  obtained using Grid 1 are consistently lower than those obtained using Grid 2 
except for R, = 1. For the limiting case of large R, the results from both grids approach zero as 
they should. 

The numerical results for added mass and added damping for finite values of B are presented in 
Table 111. For this case there are no published results for comparison. The results in Table I11 show 
a general trend of decreasing ma and c, with increasing R,, similar to the linear case. Also, it is 
observed that the values of ma and c, show only a small change with the small change in p and 
values are close to the values for the linear case for the fi values considered here. 
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LEGEND 
v =Grid I 
o=Grid  2 

0.0 d.0 4.0 6.0 11.0 10.0 12.0 14.0 16.0 18.0 

8. 
Figure 10. Added damping c, for oscillating square body for = 0 

Table 111. Added mass ma and added damping c, for oscillating square body 

53 1 

1.0 

P Added mass m, Added damping c, 

1.99 
1.99 

26.01 
26.01 

120 
120 
566.44 
566.44 

0.06 
0.1 
0.06 
0.1 
0.08 
0.1 
0.0376 
0.058 

5.40 
5.62 
2.19 
2.30 
1.67 
1.64 
1.31 
1.31 

7.20 
6.78 
1.71 
1.23 
0.28 
0 4  1 
0.23 
0.25 

Oscillating symmetric Joukowski profile 

conformal transformation 
The symmetric Joukowski profile used for numerical computation is obtained by introducing the 

which transforms the region outside the Joukowski profile in the z plane onto the region outside 
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Y n 

Figure 11. Physical z plane and [ plane 

TableIV. Added mass m, and added damping c, for 
oscillating Joukowski profile for R ,  large and p = 0 

R, Added mass ma Added damping c, 

500 
5000 

10 000 
1 x 106 

0.899 0.397 
0-695 0-079 
0.683 0.043 
0678 0.003 

Inviscid 0.687 0 
(Appendix) 

the unit circle in the [ plane (see Figure 11). The chord length is chosen as the characteristic 
length b with unit value. Numerical results are obtained for the body performing oscillations 
parallel to the x axis using the grid corresponding to D,/b = 18.3 in Reference 6. 

The added mass, added damping and added force quantities are presented for a range of R ,  and /3 
values including the linear case of /3 = 0. The oscillating symmetric Joukowski profile exhibits a 
finite added force as a result of its asymmetry in the x direction but only for finite 8. 

The values of m, and c, for large values of R,  and the linear case of /3= 0 are presented in 
Table IV. As R ,  increases, the value of added mass seems to converge rapidly to a value slightly 
lower than the theoretical value given in the Appendix but only by 1.5%. The value of c, approaches 
zero as it should. 

The values of the added mass and added damping for moderate values of R ,  and B = O  are 
shown graphically in Figures 12 and I3 and the corresponding values for finite B are tabulated 
in Table V. 

The results in Table V show a general trend of decreasing values of m, and c, with increasing R,, 
the same as for the linear case shown in Figures 12 and 13.1 t is also observed that m, and c, change 
very little with p for the values of /3 considered here. Generally, the added force increases with 
increasing R ,  except for one case; that is, for R,  = 206 and p = 0.0325 the added force is negative 
(but small), which apparentiy is associated with an abrupt change in flow pattern.6 

Results for associated flow 

In the foregoing the results have been presented for the case of a body oscillating with velocity 
U(t) = uo cos (ot) in an otherwise undisturbed fluid. As discussed earlier, it is fairly easy to obtain 
the corresponding results for a stationary body in a flow field where the far field has a horizontal 
velocity u = - uo cos (wt), since the only essential difference in the flow fields is the uniform pressure 
gradient -paU/dt. Hence it is easy to show7 that the relation between the velocities and 
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Table V. Added mass ma, added damping c, and added force f a  for oscillating Joukowski profile 

Added mass ma Added damping c, Added force fa R ,  B 
55.1 
55.1 
55.1 

206 
206 
206 
206 
206 
206 
206 

0.01 
0.064 
0.1 
0.009 1 
0-0131 
00188 
0.025 1 
0.0325 
0.0622 
0.1 

1.65 
1.56 
1.69 
1.12 
1.12 
1.12 
1.11 
1.08 
1.14 
1.19 

1.36 
1.43 
1.35 
0.67 
067 
0.68 
0.69 
0.74 
0.60 
0.6 1 

0.63 x 10-5 
0-97 x 10-3 

0.30 10-5 
0.59 10-5 
0.11 10-4 
0.16 x 10-4 

-0.40 x 10-5 
0.23 x 1 0 - 3  

0.32 x lo-’ 

0.10 x 10-2 

pressure in the two co-ordinate systems shown in Figure 1 is 

ua = u, + cos t ,  va = uc ,  pa = p c  + R,xa sin t + K ,  (23) 
where K is simply an integration constant; and the corresponding relation between the added mass, 
added damping and added force is 

(ma)= = (ma)= + 1, (ca)a = ( c a ) c ,  ( f a l a  = ($a),. (24) 
Therefore, to evaluate (i) the velocities and pressure and (ii) the added mass, added damping and 
added force for the case of oscillatory flow remote from the fixed body when the respective results 
are available for the case of the oscillating body in an otherwise undisturbed fluid, equations (23) 
and (24) respectively are used. 

CONCLUDING REMARKS 

The present method of determining the fluid forces on oscillating bodies in viscous fluid seems to 
work well for the range of parameters studied here. Although the parameter limits of applicability 
have not been fully explored as yet, there are some obvious limits. Since the oscillating body 
boundary conditions are expanded only to order p, then B should be kept small, perhaps d 0.2. For 
small p there seems to be no limit on the frequency Reynolds number R,. However, there are 
practical limits on the Reynolds number Re in that, as Re increases, the flow field becomes more 
complex (the boundary layer becomes thinner) and the finite element grid must be refined. 

The results for the added mass and added damping for the linear case of j3 = 0 compare very well 
with other finite element results and exact analytical results. Furthermore, they seem to approach 
the correct limiting values for the inviscid flow when R,  is large. New results for the added mass, 
added damping and added force have been obtained for finite values of the body amplitude 
parameter p. From these results it is observed that the effect of p on the added mass and added 
damping is very small (at least up to p z 0.1). The steady streaming component of flow does not 
create any added force on bodies which are oscillating perpendicular to the axis of symmetry (circle 
and square), but does lead to finite values for asymmetric bodies such as the Joukowski profile. 
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APPENDIX. INVISCID CALCULATIONS FOR JOUKOWSKI PROFILE 

The total potential for a body having translation velocity U ( t )  in the x direction can be expressed as 
(see Newman16) 

4 = u41. (25) 
The potential defined by (25) satisfies the body boundary condition provided d1 satisfies the 

condition 

where the outward-pointing unit normal vector to the body is given as n = n,i  + n2j. This unit 
normal vector can be written as 

(27) 
where 8 is the angle which the co-ordinate S along the boundary makes with the positive x axis. 
Therefore the boundary condition (26) can be written as 

n = sin Si + cos Sj, 

The added mass for such a body is given as 

ma=pl 4,sinOdS, s 
where p is the fluid density and 1 is the axial length of the body. Introducing non-dimensional 
variables 

6ia = m,/plA,, s"= Slb,  = 41 fb 

into equation (29), we obtain 

ma = @'/Ab) g51 sin OdS, (30) s 
where all quantities are their respective non-dimensional values and the over tilde has been 
dropped for convenience. 

The complex potential F for inviscid flow past the Joukowski profile (see Figure 11) with 
unit x-velocity at infinity is given in the [ plane as (see Tamada and Miyagi17) 

F = +([ - 115). (3 1) 
The complex potential F for the Joukowski profile moving with unit x-velocity in an otherwise 

undisturbed fluid differs from (3 1) by the free stream potential provided the relative velocity 
between the body and the fluid at infinity is the same in both cases (see Newman16). Therefore the 
complex potential for this case is given as 

F = $([ + 115) - X. (32) 
To obtain cpl from (32), we take the real part of F and note the fact that 5 = ein on the body. This 
results in 

cpl =$cosA-x. (33) 
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Substituting equation (33) into (30), we obtain 

ma = (b2/Ab)  2 cos 1 sin 6’ dS -. J (34) 

where the fact that {x sin 6’ dA = Ab/b2 by applying Green’s theorem in the plane has been used. 
The integration in (34) is evaluated using Gauss quadrature and the co-ordinate transformation 

given by equation (22). The non-dimensional cross-sectional area of the Joukowski profile under 
consideration is computed to be Ab/b2 = 0-3927 and the corresponding added mass using 10-point 
Gauss quadrature is computed to be ma = 0.6874. 
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